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Abstract

Forming Limit Stress Diagrams (FLSDs) have been intensively studied and have been considered as being path-inde-
pendent. This paper carries out a detailed study to examine the path-dependency of FLSDs based on different non-pro-
portional loading histories, which are combinations of two linear strain paths. All simulations are based on crystal
plasticity theory in conjunction with the M—K approach. It is confirmed that the Forming Limit Diagram (FLD)
and the FLSD are two mathematically equivalent representations of forming limits in strain-space and stress-space,
respectively. While the FLD is very sensitive to strain path changes, the FLSD is much less path-dependent. It is sug-
gested that the FLSD is much more favourable than the FLD in representing forming limits in the numerical simulation
of sheet metal forming processes. The nature of the effect of a strain path change on forming limits is investigated in
terms of the transition work hardening behaviour upon the path change, and the concept of the FLSD.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Great efforts have been made to reduce weight and increase fuel-efficiencies in automobiles by gradually
increasing the usage of aluminium alloys. However, the formability of aluminium alloys is often viewed as
inferior to that of steel, which is still the dominant materials in automotive body panels. Very intensive re-
search has been carried out on understanding the effects of material microstructures and textures on the
formability of aluminium sheet. In most of these investigations, the concept of the Forming Limit Diagram
(FLD) has been used to represent conditions for the onset of sheet necking (see e.g. Hecker, 1975); this is
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now a standard tool for characterising materials in terms of their overall forming behaviour. However,
experimentally measuring an FLD is a very time consuming procedure, and the scatter in experimental data
for a given sheet is often so large that researchers sometimes question the accuracy and precision with which
the FLD has been determined (see e.g. Janssens et al., 2001). As a result, a significant effort has been spent
on developing more accurate and reliable numerical procedures to construct FLDs, while experimental pro-
cedures for measuring FLDs constantly improve.

Most theoretical and numerical FLD analyses have been based on the so-called M—K approach, devel-
oped by Marciniak and Kuczynski (1967). The basic assumption of this approach is the existence of a mate-
rial imperfection, in the form of a groove on the surface of the sheet. They showed that a slight intrinsic
inhomogeneity in load bearing capacity throughout a deforming sheet can lead to unstable growth of strain
in the region of the imperfection, and subsequently cause localized necking and failure. Within the M-K
framework, the influence of various constitutive features on FLDs has been explored using phenomenolog-
ical plasticity models (see e.g. Neale and Chater, 1980) and crystal plasticity (see e.g. Zhou and Neale, 1995;
Wu et al., 1997). Furthermore, the FLD also has been used to evaluate analytical yield functions for aniso-
tropic sheets (see e.g. Wu et al., 2003). Using the M—-K approach, the predicted FLDs based on crystal plas-
ticity were in good agreement with measured FLDs for rolled aluminium alloy sheets (Wu et al., 1998b;
Knockaert et al., 2002).

However, both experimental and numerical results have indicated that FLDs are very sensitive to strain
path changes (see e.g. Laukonis and Ghosh, 1978; Graf and Hosford, 1993, 1994; Zhao et al., 1996; Hiw-
atashi et al., 1998; Wu et al., 1998a; Kuroda and Tvergaard, 2000). There is no single curve in strain space
that represents the forming limit, and this limits the use of conventional FLDs for assessing forming sever-
ity because the straining path of material elements in a real sheet metal forming process is usually not
known with any certainty. Therefore, finding a single path-independent curve to characterize forming limits
is of considerable practical interest. Knowing the drawback of conventional FLDs, Arrieux et al. (1982),
among others, represented formability based on the state of stress rather than the state of strain. They con-
structed a Forming Limit Stress Diagram (FLSD) by plotting the calculated principal stresses at necking. It
was concluded that all FLSDs, based on phenomenological plasticity models such as Hill (1948) and Hos-
ford (1979), were almost path-independent (Arricux, 1995; Zhao et al., 1996; Haddad et al., 2000; Stough-
ton, 2000; Zimniak, 2000; Stoughton and Zhu, 2004). In a preliminary study on the FLSD based on crystal
plasticity, Wu et al. (2000) came to a similar conclusion. In these studies, non-proportional loading histories
were developed using combinations of two linear strain paths. The first strain path, the pre-strain opera-
tion, was common to all loading histories. Subsequent linear deformation paths were imposed by varying
the strain-rate ratio for the development of an FLD applicable to that given pre-strain path and amount.
However, the amount of pre-straining was relatively small in the sense that it was well below the FLD for
linear proportional strain paths. It is important to assess the path-dependency of the FLSD when pre-
strains are very large. Furthermore, previous research concentrated on constructing the FLSD and confirm-
ing that the FLSD was indeed insensitive to strain path changes. However, it is equally important to verify
whether the path-dependent nature of the forming limit curves in strain space can be reproduced by directly
mapping points on the stress-based limit curve to strain for a given loading history. In addition, it seems
that the FLSD itself could be used to explain the nature of the effect of a strain path change on forming
limits.

This paper re-examines the path-dependency of the forming limit stress diagram based on different non-
proportional loading histories, which are combinations of two linear strain paths. All simulations are based
on the numerical procedure developed by Wu et al. (1997), in which the Asaro and Needleman (1985) poly-
crystal plasticity model, in conjunction with the M-K approach, is used to calculate the FLDs for FCC
polycrystals. The nature of the effect of a strain path change on forming limits is investigated in terms
of the influence of pre-straining on the stress—strain curves for subsequent strain paths and the concept
of the FLSD.



P.D. Wu et al. | International Journal of Solids and Structures 42 (2005) 2225-2241 2227
2. Constitutive model

The constitutive model is based on the rate-dependent crystal plasticity model formulated by Asaro and
Needleman (1985) and employed by Wu et al. (1996). This model allows for slip system hardening as well as
lattice elasticity. It leads to a constitutive relation of the following form for each grain:

6=LD—¢" —otrD (1)

v . . .
where ¢ denotes the Jaumann rate of the Cauchy stress tensor, L is the tensor of elastic moduli, D repre-
sents the strain-rate tensor, and ¢° accounts for the visco-plastic type stress rate that is determined by the
slip rates on the various slip systems in the crystal. The slip rates are governed by the power-law expression
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where 7, is a reference shear rate taken to be the same for all slip systems, 7, is the resolved shear stress on
slip system «, g, is its hardness and m is the strain-rate sensitivity index. In the present study, isotropic hard-
ening will be assumed and results will be given for a slip system strength law of the power-law form

/’l’)) n—1
gﬁ=ho(°“+1) (3)
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where 7 is an initial critical shear stress, /g is the system’s initial hardening rate, n is the hardening exponent
and v, is the accumulated slip.

The response of a polycrystal comprised of many grains is obtained by invoking the Taylor assumption.
Thus, at a material point representing a polycrystal of many grains, the deformation in each grain is taken
to be identical to the macroscopic deformation of the continuum. Furthermore, the macroscopic values of
all quantities, such as stresses, stress rates and elastic moduli, are obtained by averaging their respective
values over the total number of grains at the particular material point.

3. Problem formulation and method of solution

The constitutive model outlined above is implemented, in conjunction with the M-K approach, into a
numerical code to predict FLDs for polycrystalline sheets having orthotropic textures. The axes x; and
X, define the rolling direction (RD) and the transverse direction (TD) in the plane of the sheet, while x;
represents the direction normal to the sheet (ND).

The basic assumption of the M—K approach is the existence of initial material or geometric imperfections
in the form of a groove or band that is initially inclined at an angle /; with respect to the x; reference direc-
tion (Fig. 1). Quantities inside the band are denoted by ( )°. The thickness along the minimum section in the
band is denoted by A°(¢), with an initial value hb(O). The initial geometric non-uniformity is defined by

1" (0)
/= h(0) (4)
with /(0) being the initial sheet thickness outside the imperfection groove.

The deformation outside the imperfection band is assumed to be either “‘strain controlled” or ‘“stress
controlled”. In the strain controlled case, we assume:
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= Di>,=0. Wi,=0 5
Du iy P, 12 s 12 ()



2228 P.D. Wu et al. | International Journal of Solids and Structures 42 (2005) 2225-2241

)

I S N

g .
i - 0-11
i i

L A A A A |

Fig. 1. The geometry and the convention employed in the FLD analysis.

where &, = D, and &, = Dy, are the (principal) logarithmic strain rates and the W; values are components
of the spin tensor. In the stress controlled case, we have

2 =a, 6’12 =0 (6)
a1l
It is further assumed, in both cases, that D3 = D,3 = W3 = W,3; =0, while D33 is specified by the condi-
tion é33 = 0. For the orthotropic textures considered here, these boundary conditions imply that the aver-
age stress components o13 = g3 = 0. It is appropriate to define some important strain paths in terms of the
strain ratio p and stress ratio o as follows:

uniaxial tension: o« = 0,

uniaxial stretching: p = —0.5,
in-plane plane strain tension: p =0,
equi-biaxial tension: o« =1,
equi-biaxial stretching: p = 1.

Under the imposed deformations described in (5) and (6), the evolution of the groove orientation  is
given by

¥ = mny(Dyy — D) — nDy, (7)

where n; = cosy and n, = sinyy are the components of the unit normal to the band in the current config-
uration (Fig. 1).

Apart from the necessary conditions at the band interface, equilibrium and compatibility inside and out-
side the band are automatically satisfied because uniform deformations are assumed both inside and out-
side the band. The compatibility condition at the band interface is given in terms of the differences in the
velocity gradients inside and outside the band:

LE/; = La/; + Uyl (8)
or
1 1
DE/; = D, + = (vunp + n,05), WE[; = Wy + = (vang — nyvp) 9)
2 2
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where v, are parameters to be determined. Here, and subsequently, Greek indices range from 1 to 2. Equi-
librium balance on each side of the interface requires that

naagﬂhb = n,0,5h (10)

in the current configuration. A set of incremental equations for v, is now obtained by substituting the incre-
mental constitutive equation (1) into the incremental form of (10), using (9) to eliminate the strain incre-
ments Dzﬁ. Together with the condition 65, = 0, this furnishes three algebraic equations for solving vy, v,
and the unknown Dj,.

The solution is obtained numerically by a linear incremental procedure. At any given stage of the pre-
scribed deformation path, the moduli L and 6° in (1) are calculated for all grains inside and outside the
band, by updating from the previous increment. The corresponding moduli and the visco-plastic type stress
rates for the polycrystals representing materials inside and outside the band are obtained by averaging over
all grains inside and outside the band, respectively. Therefore, the rates v,, or Dzﬁ, and D?3 inside the band
are directly calculated by solving the three above-mentioned algebraic equations. The sheet thickness out-
side the band / and inside the band 4° are updated based on the relations

h=Dyh, b = Do (11)

The onset of sheet necking is defined by the occurrence of a much higher maximum principal logarithmic
strain rate inside the band than outside, taken here as the condition &° /Dy = 10°, where &° represents the
strain rate inside the band. The corresponding principal logarithmic strains &}, and &5,, and principal stres-
ses o}, and o3, outside the band are the limit strains and limit stresses respectively. For a real sheet, numer-
ous initial imperfections can exist with different orientations. A conservative estimate of the forming limit
strain is that obtained from limit strain values for various values of the initial groove orientation /;, and
then selecting the minimum value as the actual forming limit strain. The entire FLD of a sheet is determined
by repeating the procedure for different strain paths outside the band as prescribed by the strain-rate ratio p
or stress-rate ratio . The non-proportional loading histories are developed using combinations of two lin-
ear strain paths. The first strain path, the pre-strain operation, is common to all loading histories. Subse-
quent linear deformation paths are imposed by varying the strain-rate ratio for the development of an FLD
applicable to that given pre-strain path and amount.

It is to be noted that, since the deformations inside and outside the band are assumed to be homogeneous,
the rather complex polycrystal plasticity model need only be applied to two separate stress—strain histories,
one inside and one outside the band. Therefore, the computational requirements are relatively modest.

4. Results

The sheet considered here is an aluminium alloy AA6111-T4. Fig. 2 shows the initial texture represented
by the {111} pole figure. The values for the material parameters in the crystal plasticity analysis are
Cy1 =236GPa, C;,=135GPa and Cy =62GPa, j,=0.001s"", m=0.002, 7o =47MPa, hy/zy= 30,
n=0.23 and ¢ = 1.0. It is noted that the crystal elastic constants, the strain rate sensitivity m and the slip
system reference plastic shearing rate j, are typical for an aluminium sheet. The hardening parameters are
estimated by curve-fitting numerical simulations of uniaxial tension in the RD to the corresponding exper-
imental data. Fig. 3 shows that the curve fitting is quite good. Furthermore, the value of the initial imper-
fection parameter was taken as fy = 0.992, which was determined by fitting the FLD prediction of in-plane
plane strain tension (p = 0) to the corresponding experimental limit strain for the sheet as-received.

For simplicity, in all figures, the limit strains are denoted by &;; and &,, instead of ¢}, and &},. Similarly,
the limit stresses ¢}, and ¢, are replaced by o;; and ¢2,.
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Fig. 2. Initial texture represented by the {111} pole figure.
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Fig. 3. Tensile stress—strain response in uniaxial tension along the RD for as-received AA6111-T4.

Fig. 4 shows the measured and predicted FLDs for the as-received sheet. In general, the agreement be-
tween the experiments and simulations is quite good. The predicted forming limit stress diagram is pre-
sented in Fig. 5. In this figure the limit stresses at necking are calculated for linear strain paths in the
range of (—0.9 <p <1.2), and for linear stress paths (0 <o <1). It is found that the limit stress curves,
based respectively on linear strain and linear stress paths, are reduced to a single curve, which defines
the Forming Limit Stress curve (FLSc) or simply FLSD for the sheet.

Fig. 6 gives the predicted limit stresses under non-proportional loading histories, shown as different sym-
bols in the figure. The non-proportional loading histories are combinations of two linear paths. The first
loading path, the pre-straining operation, is common to all loading histories and is stress or strain control-
led. Assuming ¢;; and ¢, to be the strain components at the end of pre-straining, the effective pre-strain is
defined as ¢, = 2\/ (63, + e116m + €%,)/3 (i.e., the von Mises effective strain under the assumption of material
incompressibility). Subsequent linear strain paths are imposed by varying the strain-rate ratio (p) for the
development of an FLD applicable to the given pre-straining path and amount. For example, the legend
“a=+0.0 (—0.043,0.10)” indicates that the sheet is pre-strained in uniaxial tension along the RD up to
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Fig. 4. Predicted and measured FLDs for as-received AA6111-T4.

600 T T ‘ T - ‘ - |

400

©
200 o +0.0<a<+1.0 1
+=0.9<p<+1.2
regression
0 L 2 L 1 2 L n I L s L
=100 100 300 500
GZZ

Fig. 5. Predicted FLSD under proportional deformation paths.

&> = —0.043 and &;; = 0.10. It is found that, if the amount of pre-strain is not very large, the predicted limit
stresses under non-proportional loading histories form a very narrow band around the FLSc [the FLSD
based on linear loading paths (Fig. 6a)]. Under large pre-straining (Fig. 6b) the predicted limit stresses
are still close to the FLSc, except for the worst case in which the pre-straining is equi-biaxial tension
(x=1) ending at &, = 0.252 and ¢;; = 0.20 (&5, # & due to the material anisotropy). Knowing that the
limit strains under equi-biaxial tension are &, = 0.288 and &;; = 0.228 for the as-received sheet, it is found
that the pre-straining in the worst case nearly reaches the forming limit. The effective pre-strain is about
0.45 in the worst case, and about 0.20 for the other cases shown in Fig. 6b, compared with about 0.1
for the cases in Fig. 6a.
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Fig. 6. Predicted limit stresses for the sheet pre-strained to different levels: (a) about ¢, = 0.1 and (b) ¢, > 0.2 in various different pre-
straining paths indicated by different symbols.

From results shown in Fig. 6, it is clear that the limit points under non-proportional loadings are almost
on the FLSc (for linear deformation paths) if the pre-strains are not too large. Even when the pre-straining
is very large, the predicted limit stresses are still not far away from the FLSc. Therefore, the forming limit
stress diagram is not very sensitive to strain path changes, especially when compared to the path-depend-
ence in the FLDs as shown in Wu et al. (1998b). If the FLSD is assumed to be path-independent, it is inter-
esting to consider whether the FLSD can be used to calculate the path-dependent FLD.

Considering first the effect of uniaxial stretching (p = —0.5) on forming limits, the constitutive equation
(1) is first integrated along the strain path of uniaxial stretching up to a certain level of strain ¢;;, and then
along another linear strain path (p = const). The simulation is terminated when the computed stresses hit
the FLSD, and the corresponding in-plane strain components are considered as the limit strains, which
form a point in the FLD. The entire FLD is determined by repeating the procedure for different strain paths
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Fig. 7. Predicted FLDs for the sheet pre-strained to different levels in uniaxial stretching (p = —0.5).
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as prescribed by the strain-rate ratio p (—0.5 < p < 1.0). Fig. 7 shows FLDs for both the as-received and
sheets pre-strained in uniaxial stretching up to ¢;; = 0.1 and 0.2, respectively. For a comparison, the FLDs
based on the M—K approach are also included in Fig. 7. It is clear from Fig. 7 that the effect of uniaxial
stretching on the FLD based on the M-K approach is reproduced by directly mapping the FLSD into
strain-space. More specifically, pre-straining slightly increases the major limit strain ¢, for in-plane plane
strain tension, but significantly enhances the limit strain &;; for equi-biaxial stretching. These are in good
agreement with the experimental observations of Graf and Hosford (1994). For the as-received sheet, re-
sults based on the two approaches are almost identical. The very small difference is due to the fact that
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0.0 0.2 0.4
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Fig. 8. Calculated oy, vs. ¢/, curves under in-plane plane strain tension after the sheet is pre-strained to different levels in uniaxial

stretching (p = —0.5).
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the FLSD is a smooth curve, which is a regression of the discrete limit stresses. For the pre-strained sheets,
noticeable differences are found only in strain paths near equi-biaxial tension.

As mentioned previously, the mechanism that alters the FLD due to strain path changes may be studied by
observing, in view of the concept of the FLSD, the effect of the pre-straining on the stress—strain curves in sub-
sequent strain paths. This can mainly be done in terms of the influence of pre-straining on 6, vs. &1, and/or 7,
Vs. &, curves, because the forming limit stress o}, is almost a constant for a large portion of the FLSc (see Fig.
5). Fig. 8 presents the stress a1 vs. strain ¢;; curves for both the as-received and sheets pre-strained in uniaxial
stretching up to ¢;; = ¢ = 0.1 and 0.2, respectively. It is clear that the pre-straining very slightly decreases the
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0.0 0.2 0.4 0.6
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Fig. 9. Calculated o vs. ¢, curves under equi-biaxial stretching after the sheet is pre-strained to different levels in uniaxial stretching
(p=-0.5).
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Fig. 10. Predicted FLDs for the sheet pre-strained to different levels in in-plane plane strain tension (p = 0).
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flow stress o1, in subsequent in-plane plane strain tension. This implies that the pre-straining will slightly delay
the subsequent in-plane plane strain tension state hitting the FLSD. As a result, the pre-straining slightly in-
creases the major limit strain &, for in-plane plane strain tension. Fig. 9 indicates that the uniaxial stretching
pre-straining significantly decreases the flow stress ¢ in subsequent equi-biaxial stretching. Therefore, the
pre-straining significantly increases the limit strain &;; in equi-biaxial stretching.

The effect of in-plane plane strain tension (p = 0) on the FLD is presented in Fig. 10. As expected, the
limit strain for in-plane plane strain tension is not affected by the pre-straining. The FLD shape changes
from U towards V due to the pre-straining. For uniaxial stretching, it is found that the pre-straining has
almost no effect on the limit strain &;;, but it dramatically decreases the limit strain &,,. This observation
could be explained by Fig. 11, which gives the effect of in-plane plane strain tension on subsequent uniaxial
stretching in terms of the oy vs. ¢;; and o1, vs. &, curves. By the same token, Fig. 12 explains why the
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300 £=0.20 i
200 1 1 "
0.0 0.2 0.4 0.6
(a) =
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£=0.20
200 " 1 " 1 1 1 L
0.0 -0.1 —0.2 03 -0.4
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Fig. 11. Calculated o vs. &;; curves (a) and o1 vs. &, curves (b) under uniaxial stretching after the sheet is pre-strained to different
levels in in-plane plane strain tension (p = 0).
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pre-straining significantly increases the limit strain &, but decreases the limit strain ¢, for equi-biaxial ten-
sion. However, it must be pointed out that, although the trend of in-plane plane strain pre-straining on
forming limits is picked up quite well by mapping the FLSD, the pre-straining effect is overestimated by
the mapping approach, especially for strain paths near equi-biaxial stretching (p = 1). It is found that
the FLSc changes significantly near p = 1 (Fig. 5). It is also evident that the limit stresses for strain paths
p =~ 1 for the sheets pre-strained in in-plane plane strain tension are below the FLSDs from linear strain
paths. These observations could be used to explain why the mapping approach overestimates the limit
strains in strain paths p ~ 1 for the pre-strained sheets.

Fig. 13 shows the effect of equi-biaxial tension (« = 1) pre-straining on the FLD. As expected, the FLD is
shifted towards the right because &, > 0 during the pre-straining. It is found that the pre-straining tends to
decrease the limit strain &;; for uniaxial stretching as can be estimated from Fig. 14, which gives the effect of
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Fig. 12. Calculated o,; vs. &1 curves (a) and o;; vs. &, curves (b) under equi-biaxial stretching after the sheet is pre-strained to different

levels in in-plane plane strain tension (p = 0).
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Fig. 13. Predicted FLDs for the sheet pre-strained to different levels in equi-biaxial tension (o = 1).
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Fig. 14. Calculated oy; vs. ¢;; curves under uniaxial stretching after the sheet is pre-strained to different levels in equi-biaxial tension
(x=1).

equi-biaxial tension (o = 1) pre-straining on the response of uniaxial stretching in terms of the oy vs. &y
curve. Furthermore, the limit strain &, for in-plane plane strain tension is decreased because the pre-strain-
ing increases the flow stress ¢;; in subsequent in-plane plane strain tension as shown in Fig. 15. It is inter-
esting to note that, even for the worst case, the FLD obtained by mapping the FLSD is still close to the one
based on the M-K approach, although the limit stresses are noticeably above the FLSD (see Fig. 6b). We
will return to this worst case later.

So far, the effect of strain path changes on the FLD has been studied by combining two linear deforma-
tion paths without unloading after the first strain path. The unloading effect on the FLDs is presented in
Fig. 16 for pre-straining up to ¢;; = 0.10 in uniaxial stretching (p = —0.5) and in-plane plane strain tension
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Fig. 15. Calculated o, vs. &1 curves under in-plane plane strain tension after the sheet is pre-strained to different levels in equi-biaxial
tension (. =1).
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Fig. 16. Predicted FLDs for the pre-strained sheets with or without unloading after pre-straining to &;; = 0.1 in uniaxial stretching,
in-plane plane strain tension and equi-biaxial tension.

(p = 0) as well as equi-biaxial tension (« = 1). It is observed that the unloading has no noticeable influence
on the forming limits for the level of pre-strain considered.

We have identified the worst case as being the sheet pre-strained in equi-biaxial tension (¢ = 1) up to
& =0.252 and ¢;; = 0.20 (Fig. 6b). The calculated limit stresses based on the M—K approach were found
to be well above the FLSD for linear strain paths. However, the FLLD mapped from the FLSD was close to
the one based on the M—K approach (Fig. 13). For the pre-strained sheet, the limit strains for uniaxial
stretching are (0.246,0.206) based on the M—K approach and (0.247,0.210) by mapping the FLSD. It is
noted that both of them are not very different from the strains (0.252,0.200), where the pre-straining
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was terminated. In stress-space, the limit stresses in uniaxial stretching for the pre-strained sheet are
(91.8,473.7) and (375.3,452.6) based on the M—K approach and the mapping from the FLSD, respectively.
These limit stresses are quite different from each other, and are quite different to the stresses (441.8,441.8) at
the end of the pre-straining. However, it seems that the large difference in limit stresses between the M—K
approach and the mapping approach does not result in a large difference in the corresponding limit strains.
Perhaps, the reason for this is that the abrupt strain path change from equi-biaxial tension (¢ = 1) to uni-
axial stretching (p = —0.5) causes an immediately intrinsic unloading. This assumption of unloading due to
an abrupt path change can be verified by comparing the von Mises effective stress o, = /63, + 63, — 61102
at the end of the pre-straining and at necking. The effective stresses at necking are, respectively, 435.1 and
419.3 MPa based on the M-K approach and the mapping from the FLSD, while o, = 441.8 is obtained at
the end of the pre-straining. If the sheet is isotropic, decreasing o, implies unloading in classic plasticity
theory. Although the stresses change dramatically during this intrinsic unloading, changes in the corre-
sponding strains should remain relatively small because the unloading is an elastic process.

5. Discussion and conclusions

In this paper, we have calculated both the FLLD and FLSD based on crystal plasticity theory in conjunc-
tion with the M-K approach. The effects of strain path changes on forming limits have been studied by
considering non-proportional loading histories, which were prescribed using combinations of two linear
deformation paths.

Our numerical results have indicated that the FLD is very sensitive to strain path changes. The strain
limits could be either raised or lowered depending on the nature of the strain path change. More specifi-
cally, pre-straining in uniaxial stretching/tension raised the limit strains for subsequent in-plane plane strain
tension and equi-biaxial stretching, while pre-straining in in-plane plane strain tension increased the limit
strains for all subsequent strain combinations, and pre-straining in equi-biaxial tension decreased the for-
mability for most strain combinations. Unfortunately, experimental results on the strain path changes were
not available for the sheet considered in the present paper. However, the general trends of effects of strain
path changes on forming limits are quite similar in steel and aluminium sheets (Laukonis and Ghosh, 1978;
Graf and Hosford, 1994), and are predicted well by the M—K approach and by mapping directly from the
FLSD.

The present study has confirmed numerically that, at least in comparison to the FLD, the FLSD is not
sensitive to strain path changes. More specifically, the FLSD is almost path-independent when the pre-
straining is not very large (Fig. 6a). Therefore, the calculated limit stresses under proportional loading
paths could be used as the Forming Limit Stress curve (FLSc or simply FLSD) for the sheet. It has been
demonstrated that the effects of path changes on FLDs revealed by the M—K approach could be reasonably
reproduced by directly mapping the FLSD (Figs. 7, 10 and 13). In the case where the pre-straining is so
large that it almost reaches the forming limit strain, the limit stresses are noticeably different from the
FLSD calculated assuming linear deformation paths (Fig. 6b). However, even this large difference in stres-
ses does not necessary result in a poor agreement in the FLD between the M—K approach and the mapping
approach (Fig. 14).

We have also demonstrated that the nature of the effect of a strain path change on FLDs could be best
understood by examining stress—strain curves and their intersections with the FLSD in some detail. For
example, the decrease of the uniaxial ductility of the sheet due to biaxial pre-straining arises from increases
in the flow stress ¢1; under biaxial tension, resulting in a premature intersection with the FLSD when the
deformation mode is changed from biaxial tension to uniaxial stretching (Fig. 13).

In summary, the FLD and FLSD are two mathematically equivalent representations of forming limits in
strain-space and stress-space, respectively. However, the FLSD is much less path-dependent than the FLD
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is. The investigation presented in this paper suggests that the FLSD is much more favourable than the FLD
in representing forming limits in the numerical simulation of sheet metal forming processes.
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